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Values and types
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A screenshot of the featured courses on .FutureLearn

https://www.futurelearn.com/


Text



Numbers



Alternatives



How do we represent these values?



We use strings for text:

"Explore featured courses"

'Find out more'



We use strings for text:

"Explore featured courses"

'Find out more'

We use booleans to choose between alternatives

true, false



What about numbers?



What about numbers?
Many languages differentiate between types of numbers.
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What about numbers?
Many languages differentiate between types of numbers.

Integer types (int) for 75, -2, …

Floating point types (float) for 4.6, -0.789, …



But in JavaScript …



But in JavaScript …
… a number is just a number.



typeof a value
Use the typeof keyword to get the type of a value:

typeof "Hi" // "string"

typeof 12.34 // "number"

typeof 3_000_000 // "number"

typeof false // "boolean"



Comments
Use comments to explain pieces of your code.

The language ignores them.



// Line comment

/* Block comment

can span

multiple lines. */



Expressions



Expressions
Things that have value.



The simplest expressions are literals:

1, "Hi", true.



The simplest expressions are literals:

1, "Hi", true.

But they’re not so useful alone.



You can use operators to build complex expressions:

1 - 2;            // -1

50 * 70 / 67 + 9; // 61.2388…

typeof true;      // "boolean"



Wrapping an expression in brackets doesn’t change it’s value:

(1 - 2);            // -1

(50 * 70 / 67 + 9); // 61.2388…

(typeof true);      // "boolean"



Operator precedence rules apply, even to non-arithmetic operators:

(50 * 70 / 67 + 9); // 61.2388…

50 * 70 / (67 + 9); // 46.0526…

typeof (2 - 1);     // "number"



You can use an expression where a value is expected:

typeof (50 * 70 / 67 + 9)

console.log(typeof true)



What if we wanted to store
the value of an expression?



Variables



// Declare a variable

const costPerItem = 3000



// Use the variable

console.log(costPerItem * 10)

// Declare a variable

const costPerItem = 3000



How to name variables



How to name variables
First character must be a letter, underscore _, or dollar sign $.

E.g, x, $, _
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How to name variables
First character must be a letter, underscore _, or dollar sign $.

E.g, x, $, _

Following characters may include numbers

Valid: y2, first_name, _LAST_NAME_, $10

Invalid: 2a, middle name

Names are case-sensitive

message, Message, MESSAGE are different variables.



The JavaScript convention is

camelCase 🐪



Variables that vary
A const variable is constant; it always refers to the same value.



Variables that vary
A const variable is constant; it always refers to the same value.

That’s usually fine, but sometimes we’d like to reassign a variable to

a different value.



Consider an online shopping cart:

Screenshot of a cart item on .Tarbiyah Books Plus

https://tarbiyahbooksplus.com/


const quantity = 1

// When the user clicks the plus button,

// increase the quantity.

quantity = quantity + 1



quantity = quantity + 1

// Error: Assignment to constant variable

const quantity = 1

// When the user clicks the plus button,

// increase the quantity.



Use the let keyword instead:

let quantity = 1

quantity = quantity + 1

console.log(quantity) // 2



Addition assignment operator

quantity += 1

let quantity = 1

console.log(quantity) // 2



Increment operator

quantity++

let quantity = 1

console.log(quantity) // 2



You can initialize a let variable with a value after declaring it:

let quantity;

// initialize after declaring

quantity = 1

quantity++

console.log(quantity) // 2



Its value will be undefined until you initialize it:

console.log(quantity) // undefined

let quantity;

// initialize after declaring

quantity = 1

quantity++

console.log(quantity) // 2



Absence of value
Special values: undefined and null.

null is often used for an intentionally absent value.



Operations on strings



Joining strings
Also known as concatenation:

const firstName = "Mubaraq"

const lastName = "Wahab"

const fullName = firstName + lastName

// "MubaraqWahab"



// Better

const fullName = firstName + " " + lastName

// "Mubaraq Wahab"

const firstName = "Mubaraq"

const lastName = "Wahab"



Interpolation
You can use special strings called template literals to interpolate:

const firstName = "Mubaraq"

const lastName = "Wahab"

const fullName = `${firstName} ${lastName}`

// "Mubaraq Wahab"



Get a character from a string
Use square brackets to specify an index (starting from zero):

//                 0123456

const firstName = "Mubaraq"

const initial = firstName[0] // "M"

const second = firstName[1] // "u"

// and so on...



Get part of a string
Use the slice method:

//                 0123456

const firstName = "Mubaraq"

const firstThreeLetters = firstName.slice(0, 3)

// "Mub"

const thirdToEnd = firstName.slice(2)

// "baraq"



Does a string include this?
Use the includes method to check if a string includes another:

const firstName = "Mubaraq"

firstName.includes('ba')

// true

firstName.includes('ab')

// false



How long is a string?
Use the length property to get the length of a string:

const firstName = "Mubaraq"

firstName.length

// 7



String to number
You need to convert a string to a number sometimes,

such as when working with user input:

// Assume this is from user input

const input = "20"

// Careful here! Result is "203"

input + 3



Use the Number function to convert a string to a number:

// Convert to number first!

const inputAsNumber = Number(input)

// Result is 23

inputAsNumber + 3

// Assume this is from user input

const input = "20"



Or use the + operator:

// An idiomatic way

const inputAsNumber = +input

// Assume this is from user input

const input = "20"

// Result is 23

inputAsNumber + 3



Number to string
The opposite is possible too, using the String function:

const num = 20

// Result is "20"

const numAsString = String(num)



Or the toString method:

// Result is "20"

const numAsString = num.toString()

const num = 20



Or even concatenating with an empty string:

// Result is "20"

const numAsString = "" + num

const num = 20



UPPERCASE, lowercase

const firstName = "Mubaraq"

firstName.toUpperCase()

// "MUBARAQ"

firstName.toLowerCase()

// "mubaraq"



Statements



Statements
A program is a sequence of statements.

Statements are executed one after another.



const name = 'Mubaraq'

const message = 'Hello ' + name

typeof message



A variable declaration is a statement:

const name = 'Mubaraq'

const message = 'Hello ' + name

typeof message



An expression can act as a statement too:

typeof message

const name = 'Mubaraq'

const message = 'Hello ' + name



You can’t use a statement as an expression:

// Error!

const message = 'Hello ' + (const name = 'Mubaraq')

typeof message



An assignment is an expression:

let name

const message = 'Hello ' + (name = 'Mubaraq')

typeof message


