
#2

Values and types

https://thinkdev.netlify.app/

A screenshot of the featured courses on .FutureLearn

https://www.futurelearn.com/

Text

Numbers

Alternatives

How do we represent these values?

We use strings for text:

"Explore featured courses"

'Find out more'

We use strings for text:

"Explore featured courses"

'Find out more'

We use booleans to choose between alternatives

true, false

What about numbers?

What about numbers?
Many languages differentiate between types of numbers.

What about numbers?
Many languages differentiate between types of numbers.

Integer types (int) for 75, -2, …

What about numbers?
Many languages differentiate between types of numbers.

Integer types (int) for 75, -2, …

Floating point types (float) for 4.6, -0.789, …

But in JavaScript …

But in JavaScript …
… a number is just a number.

typeof a value
Use the typeof keyword to get the type of a value:

typeof "Hi" // "string"

typeof 12.34 // "number"

typeof 3_000_000 // "number"

typeof false // "boolean"

Comments
Use comments to explain pieces of your code.

The language ignores them.

// Line comment

/* Block comment

can span

multiple lines. */

Expressions

Expressions
Things that have value.

The simplest expressions are literals:

1, "Hi", true.

The simplest expressions are literals:

1, "Hi", true.

But they’re not so useful alone.

You can use operators to build complex expressions:

1 - 2; // -1

50 * 70 / 67 + 9; // 61.2388…

typeof true; // "boolean"

Wrapping an expression in brackets doesn’t change it’s value:

(1 - 2); // -1

(50 * 70 / 67 + 9); // 61.2388…

(typeof true); // "boolean"

Operator precedence rules apply, even to non-arithmetic operators:

(50 * 70 / 67 + 9); // 61.2388…

50 * 70 / (67 + 9); // 46.0526…

typeof (2 - 1); // "number"

You can use an expression where a value is expected:

typeof (50 * 70 / 67 + 9)

console.log(typeof true)

What if we wanted to store
the value of an expression?

Variables

// Declare a variable

const costPerItem = 3000

// Use the variable

console.log(costPerItem * 10)

// Declare a variable

const costPerItem = 3000

How to name variables

How to name variables
First character must be a letter, underscore _, or dollar sign $.

E.g, x, $, _

How to name variables
First character must be a letter, underscore _, or dollar sign $.

E.g, x, $, _

Following characters may include numbers

Valid: y2, first_name, _LAST_NAME_, $10

Invalid: 2a, middle name

How to name variables
First character must be a letter, underscore _, or dollar sign $.

E.g, x, $, _

Following characters may include numbers

Valid: y2, first_name, _LAST_NAME_, $10

Invalid: 2a, middle name

Names are case-sensitive

message, Message, MESSAGE are different variables.

The JavaScript convention is

camelCase 🐪

Variables that vary
A const variable is constant; it always refers to the same value.

Variables that vary
A const variable is constant; it always refers to the same value.

That’s usually fine, but sometimes we’d like to reassign a variable to

a different value.

Consider an online shopping cart:

Screenshot of a cart item on .Tarbiyah Books Plus

https://tarbiyahbooksplus.com/

const quantity = 1

// When the user clicks the plus button,

// increase the quantity.

quantity = quantity + 1

quantity = quantity + 1

// Error: Assignment to constant variable

const quantity = 1

// When the user clicks the plus button,

// increase the quantity.

Use the let keyword instead:

let quantity = 1

quantity = quantity + 1

console.log(quantity) // 2

Addition assignment operator

quantity += 1

let quantity = 1

console.log(quantity) // 2

Increment operator

quantity++

let quantity = 1

console.log(quantity) // 2

You can initialize a let variable with a value after declaring it:

let quantity;

// initialize after declaring

quantity = 1

quantity++

console.log(quantity) // 2

Its value will be undefined until you initialize it:

console.log(quantity) // undefined

let quantity;

// initialize after declaring

quantity = 1

quantity++

console.log(quantity) // 2

Absence of value
Special values: undefined and null.

null is often used for an intentionally absent value.

Operations on strings

Joining strings
Also known as concatenation:

const firstName = "Mubaraq"

const lastName = "Wahab"

const fullName = firstName + lastName

// "MubaraqWahab"

// Better

const fullName = firstName + " " + lastName

// "Mubaraq Wahab"

const firstName = "Mubaraq"

const lastName = "Wahab"

Interpolation
You can use special strings called template literals to interpolate:

const firstName = "Mubaraq"

const lastName = "Wahab"

const fullName = `${firstName} ${lastName}`

// "Mubaraq Wahab"

Get a character from a string
Use square brackets to specify an index (starting from zero):

// 0123456

const firstName = "Mubaraq"

const initial = firstName[0] // "M"

const second = firstName[1] // "u"

// and so on...

Get part of a string
Use the slice method:

// 0123456

const firstName = "Mubaraq"

const firstThreeLetters = firstName.slice(0, 3)

// "Mub"

const thirdToEnd = firstName.slice(2)

// "baraq"

Does a string include this?
Use the includes method to check if a string includes another:

const firstName = "Mubaraq"

firstName.includes('ba')

// true

firstName.includes('ab')

// false

How long is a string?
Use the length property to get the length of a string:

const firstName = "Mubaraq"

firstName.length

// 7

String to number
You need to convert a string to a number sometimes,

such as when working with user input:

// Assume this is from user input

const input = "20"

// Careful here! Result is "203"

input + 3

Use the Number function to convert a string to a number:

// Convert to number first!

const inputAsNumber = Number(input)

// Result is 23

inputAsNumber + 3

// Assume this is from user input

const input = "20"

Or use the + operator:

// An idiomatic way

const inputAsNumber = +input

// Assume this is from user input

const input = "20"

// Result is 23

inputAsNumber + 3

Number to string
The opposite is possible too, using the String function:

const num = 20

// Result is "20"

const numAsString = String(num)

Or the toString method:

// Result is "20"

const numAsString = num.toString()

const num = 20

Or even concatenating with an empty string:

// Result is "20"

const numAsString = "" + num

const num = 20

UPPERCASE, lowercase

const firstName = "Mubaraq"

firstName.toUpperCase()

// "MUBARAQ"

firstName.toLowerCase()

// "mubaraq"

Statements

Statements
A program is a sequence of statements.

Statements are executed one after another.

const name = 'Mubaraq'

const message = 'Hello ' + name

typeof message

A variable declaration is a statement:

const name = 'Mubaraq'

const message = 'Hello ' + name

typeof message

An expression can act as a statement too:

typeof message

const name = 'Mubaraq'

const message = 'Hello ' + name

You can’t use a statement as an expression:

// Error!

const message = 'Hello ' + (const name = 'Mubaraq')

typeof message

An assignment is an expression:

let name

const message = 'Hello ' + (name = 'Mubaraq')

typeof message

